Emeritus Professor GOH Suat Hong


Personal Web Page

B.Sc., 1964, Nanyang University; M.Sc., 1966, University of Akron; Ph.D., 1971, University of Akron; D.Sc., 1993, National University of Singapore

Contact Information
Department of Chemistry, NUS 
3 Science Drive 3 
Singapore 117543 
Office: S9-03-01
Tel: (65)-6516-2844
Fax: (65)-6779-1691
Email: chmgohsh@nus.edu.sg


Research Interests

My current research interests cover the following areas:

Polymer and materials science

C60-end-capped polymers

We are interested in the synthesis and properties of C60-end-capped polymers. For double-C60-end-capped polymers, the aggregation of C60 moieties leads to a network-like structure. As a result, the polymers possess superior mechanical properties than the parent polymers. For example, the end-capping of poly(ethylene oxide) with C60 transforms a waxy and weak polymer to a strong and tough material. Similarly the end-capping of poly(n-butyl methacrylate) with C60 increases the tensile strength and toughness of the polymer by 240 and 190 %, respectively. A combination of a double-C60-end-capped polymer and a linear thermoplastic polymer produces a pseudo-semi-interpenetrating polymer network. For example, poly(vinyl chloride) can be strengthened and toughened simultaneously through the addition of double-C60-end-capped poly(n-butyl methacrylate).

Polymer/carbon nanotube composites

To produce high performance polymer/carbon nanotube composites, the nanotubes are to be homogeneously dispersed in the polymer matrix and the polymer-carbon nanotube interfacial adhesion has to be strong. The two requirements can be met by using polymer-grafted carbon nanotubes. Our recent research focuses on the grafting of polymers such as polyethylene and pheonxy onto carbon nanotubes using a reactive blending method. The mechanical properties of several polymer/polymer-grafted multiwalled carbon nanotubes composite systems are being studied.


Representative Publications

  • S. H. Goh. Miscible polymer blends. In Polymer Blends Handbook, 2nd Edition, Volume 3. Edited by L. A. Utracki and C. A. Wilkie. Springer, New York. Chapter 21, pp. 1915-2151 (2014).

  • J. Li*, C. Yang, H. Li, X. Wang, S. H. Goh and K. W. Leong. Polycationic polyrotaxanes capable of forming complexes with nucleic acids. US Patent 7,883,688 (08 February 2011).

  • B. X. Yang, K. P. Pramoda, G. Q. Xu and S. H. Goh*. Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Advanced Functional Materials, 17, 2062-2069 (2007).
  • M. Wang, J. H. Shi, K. P. Pramoda and S. H. Goh. Microstructure, crystallization and dynamic mechanical behavior of poly(vinylidene fluoride) composites containing poly(methyl methacrylate)-grafted multiwalled carbon nanotubes. Nanotechnology18, Article 235701 (2007).
  • B. X. Yang, J. H. Shi, K. P. Pramoda and S. H. Goh. Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes. Nanotechnology18, Article 125606 (2007). (A Featured Article)
  • C. Yang, H. Li, S. H. Goh and J. Li. Cationic star polymers consisting of alpha-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials28, 3245-3254 (2007).
  • Y. Wang, L. S. Wang, S. H. Goh and Y. Y. Yang. Synthesis and characterization of cationic micelles self-assembled from a biodegradable copolymer for gene delivery. Biomacromolecules8, 1028-1037 (2007).
  • X. J. Loh, S. H. Goh and J. Li. New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules8, 585-592 (2007).
  • X. Li, K. L. Liu, J. Li, P. S. Tan, L. M. Chan, C. T. Lim and S. H. Goh. Synthesis, characterization , and morphology studies of biodegradable amphiphilic poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene glycol) multiblock copolymers. Biomacromolecules7, 3112-3119 (2006).
  • J. Li, C. Yang, H. Li, X. Wang, S. H. Goh, J. L. Ding, D. Y. Wang and K. W. Leong. Cationic supramolecules composed of multiple oligoethylenimine-grafted Î²-cyclodextrins threaded on a polymer chain for efficient gene delivery. Advanced Materials18, 2969-2974 (2006).
  • M. Wang, K. P. Pramoda and S. H. Goh. Reinforcing and toughening of poly(vinyl chloride) with double-C60-end-capped poly(n-butyl methacrylate). Macromolecules39, 4932-4934 (2006).
  • M. Wang, K. P. Pramoda and S. H. Goh. Enhancement of interfacial adhesion and dynamic mechanical properties of poly(methyl methacrylate)/multiwalled carbon nanotube composites with amine-terminated poly(ethylene oxide). Carbon44, 613-617 (2006).
  • M. Wang, K. P. Pramoda and S. H. Goh. Enhancement of the mechanical properties of poly(styrene-co-acrylonitrile) with poly(methyl methacrylate)-grafted multiwalled carbon nanotubes. Polymer46, 11510-11516 (2006).
  • Y. Liu, D. C. Wu, W. D. Zhang, X. Jiang, C. B. He, T. S. Chung, S. H. Goh and K. W. Leong. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA.Angewandte Chemie International Edition44, 4782-4785 (2005).
  • D. C. Wu, Y. Liu, C. B. He and S. H. Goh. Blue photoluminescence from hyperbranched poly(amino ester)s,Macromolecules38, 9906-9909 (2005).